\qquad
\qquad

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE - OCTOBER, 2017

 TECHNICAL MATHEMATICS - II

 TECHNICAL MATHEMATICS - II}
[Time : 3 hours
(Maximum marks : 100)

PART - A
(Maximum marks : 10)

I Answer all questions. Each question carries 2 marks.

1. Evaluate $\lim _{x \rightarrow 0} \frac{3 x-5}{2 x+4}$
2. Find $\frac{d y}{d x}$ if $y=x^{2} \sin x$
3. If $\mathrm{s}=\mathrm{t}^{2}-4 \mathrm{t}+3$, find the velocity at $\mathrm{t}=4$ seconds.
4. Find $\int \tan ^{2} x d x$
5. Solve $\frac{d y}{d x}+3 y=0$.

> PART - B
(Maximum marks : 30)
II Answer any five of the following questions. Each question carries 6 marks.

1. If $x^{2} y^{2}=x^{3}+y^{3}+3 x y$, Find $\frac{d y}{d x}$
2. If $y=x \cos x$, Prove that $y^{11}+y+2 \sin x=0$
3. Find the equation of the tangent and normal to the curve
$y=x^{2}+x-1$ at $(2,7)$.
4. Find $\int x^{2} \sin x d x$.
5. Evaluate $\int_{0}^{2} x^{3} \log x d x$
6. Find the area bounded by one arch of the curve $y=\sin 3 x$ and the X-axis.
7. Solve $x \frac{d y}{d x}+3 y=5 x^{2}$. $(5 \times 6=30)$

PART - C

(Maximum marks : 60)
(Answer one full question from each unit. Each full question carries 15 marks)
UNIT - I

III (a) Differentiate cosx by the method of first principle.
(b) If $\mathrm{x}=\mathrm{a} \sec \theta, \mathrm{y}=\mathrm{b} \tan \theta$, find $\frac{\mathrm{dy}}{\mathrm{dx}}$.
(c) If $y=a e^{x}+b e^{2 x}$, Prove that $y^{11}-3 y^{1}+2 y=0$.

Or
IV (a) Evaluate $\lim _{x \rightarrow 3} \frac{x^{3}-27}{x^{4}-81}$.
(b) If $y=A \operatorname{cosp} x+B \sin p x$, show that $\frac{d^{2} y}{d x^{2}}$ is proportional to y.
(c) If $y=e^{4 x} \log (\sin x)$, find $\frac{d y}{d x}$.
Unit - II
V (a) For what values of x is the tangent to the curve $\frac{x}{x^{2}+1}$ parallel to the X-axis. 5
(b) The displacement of a body is given by $x=4 \cos 3 t+5 \sin 3 t$. Show that the acceleration of the body is always proportional to the displacement.
(c) Find the maximum and minimum values of $2 x^{3}-3 x^{2}-36 x+10$.

OR

VI (a) The deflection of a beam is given by $\mathrm{y}=4 \mathrm{x}^{3}+9 \mathrm{x}^{2}-12 \mathrm{x}+2$.
Find the maximum deflection.
5
(b) A balloon is spherical in shape. Gas is escaping from it at the rate of $10 \mathrm{cc} / \mathrm{sec}$. How fast is the surface area shrinking when the radius is 15 cm ?
(c) Find the range of values of x for which $x^{2}+3 x-4$ is
(i) increasing
(ii) decreasing

Unit - III
VII (a) Find $\int(\tan x+\cot x)^{2} d x$.
(b) Evaluate $\int_{0}^{\pi} \cos ^{2} 2 x d x$.
(c) Find
(i) $\int \frac{3 x-1}{x^{4}} d x$
(ii) $\int(3 \mathrm{x}+4)(2 \mathrm{x}-1) \mathrm{dx}$.
$3+2=5$

VIII

Marks

(a) Find
(i) $\int \frac{\sec ^{2} \mathrm{x}}{\sqrt{1-\tan ^{2} \mathrm{x}}} \mathrm{dx}$,
(ii) $\int \frac{2 x}{x^{2}+1} d x$.
$3+2=5$
(b) Evaluate $\int_{0}^{\pi / 4} \frac{\sec ^{2} x}{(1+\tan x)} d x$. 5
(c) Find
(i) $\int \frac{x^{2}}{\left(8+x^{3}\right)^{4}} d x$
(ii) $\int \frac{e^{2 x}}{1+e^{2 x}} d x$.
$3+2=5$
UNIT - IV

IX (a) Find the area enclosed between the curve $y=x^{2}-x-2$ and the X-axis. 5
(b) Find the volume generated when the portion of the parabola $y^{2}=4 x$ between
$x=0$ and $x=4$ revolves about the X-axis.
(c) Solve $\frac{d y}{d x}=e^{x+y}+x^{2} e^{y}$.

Or
X (a) Find the area enclosed between the curves $y=x^{2}$ and $2 x+y-3=0$.
(b) Find the volume of the solid obtained by rotating one arch of the curve $y=\sin x$ about the X-axis.
(c) Solve $x\left(1+y^{2}\right) d x+y\left(1+x^{2}\right) d y=0$.

