TED (15) - 1002
(REVISION - 2015)

Reg. No. \qquad
Signature

FIRST SEMESTER DIPLOMA EXAMINATION IN ENGINEERING/ TECHNOLOGY - OCTOBER/NOVEMBER, 2016 ENGINEERING MATHEMATICS - I

[Time : 3 hours
(Maximum marks : 100)

PART - A
(Maximum marks : 10)

I Answer all questions. Each question carries 2 marks.

1. Prove that $(\sin A+\cos A)^{2}=1+2 \sin A \cos A$.
2. If $\sin A=3 / 5$ and A is acute find $\sin 3 A$.
3. Prove that in triangle $\mathrm{ABC}, \mathrm{abc}=4 \mathrm{R} \boldsymbol{\Delta}$
4. Find $\frac{d y}{d x}$ if $y=e^{x} \log x$
5. Find the velocity and acceleration at time t, of a particle moving according as

$$
s=5 t^{3}-2 t^{2}+9 t+1
$$

PART - B
(Maximum marks : 30)
II Answer any five questions from the following. Each question carries 6 marks.

1. Express $\sqrt{3} \cos x+\sin x$ in the form $R \sin (x+\alpha)$ where ' α ' is acute.
2. Prove that $\cos 20^{\circ} \cos 40^{\circ} \cos 80^{\circ}=\frac{1}{8}$.
3. Prove that $R\left(a^{2}+b^{2}+c^{2}\right)=a b c(\cot A+\cot B+\cot C)$
4. Differentiate 'cosx' by the method of first principles.
5. Find $\frac{d y}{d x}$ if $x^{2} y^{2}=x^{3}+y^{3}+3 x y$.
6. Find the equation to the tangent and normal to the curve $y=\sqrt{25-x^{2}}$ at $(4,3)$
7. Prove that $\sin A+\sin \left(\frac{2 \pi}{3}+A\right)+\sin \left(\frac{4 \pi}{3}+A\right)=0$.

$$
(5 \times 6=30)
$$

PART - C

(Maximum marks : 60)
(Answer one full question from each unit. Each full question carries 15 marks.)
UNIT - I

III (a) Prove that $(\cot \mathrm{A}-1)^{2}+(\cot \mathrm{A}+1)^{2}=2 \operatorname{cosec}^{2} \mathrm{~A}$.
(b) If $\sin \theta=\frac{-24}{25}$ and θ is in the fourth quadrant, calculate the value of

$$
\frac{30 \cos \theta-7 \tan \theta}{3 \cos \theta-\sin \theta}
$$

(c) Prove that $2 \tan 10^{\circ}+\tan 40^{\circ}=\tan 50^{\circ}$

Or
IV (a) Prove that $\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}=\sec \theta-\tan \theta$
(b) If $\cos A=\frac{-12}{13}, \cot B=\frac{24}{7}$ and A is in II quadrant and B is in quadrant I, find $\sin (\mathrm{A}+\mathrm{B})$ and $\cos (\mathrm{A}-\mathrm{B})$
(c) The horizontal between two towers is 50 m and the angle of depression of the first tower as seen from the second which is in 150 m height is 60°. Find the height of the first tower.
UnIt - II
V (a) Prove that $\frac{\sin A+\sin 3 A+\sin 5 A}{\cos A+\cos 3 A+\cos 5 A}=\tan 3 A$.
(b) Prove that $\cot \mathrm{A}-\cot 2 \mathrm{~A}=\operatorname{cosec} 2 \mathrm{~A}$.
(c) Solve $\triangle \mathrm{ABC}$ given $\mathrm{a}=4 \mathrm{~cm}, \mathrm{~b}=5 \mathrm{~cm}, \mathrm{c}=7 \mathrm{~cm}$

Or

VI (a) Prove that $\frac{\sin 3 \mathrm{~A}}{\sin \mathrm{~A}}+\frac{\cos 3 \mathrm{~A}}{\cos \mathrm{~A}}=4 \cos 2 \mathrm{~A}$
(b) Prove that $\cos 3 \mathrm{~A}+\cos 5 \mathrm{~A}+\cos 9 \mathrm{~A}+\cos 17 \mathrm{~A}=4 \cos 4 \mathrm{~A} \cos 6 \mathrm{~A} \cos 7 \mathrm{~A}$.
(c) Two angles of a triangular plot of land are $53^{\circ} 17^{\prime}$ and $67^{\circ} 09^{\prime}$ and the side between them is measured to be 100 cm . How many metres of fencing is required to fence the plot.

VII (a) Evaluate : $\operatorname{Lt}_{x \rightarrow 4} \frac{x^{3}-64}{x^{2}-16}$
(b) Find $\frac{d y}{d x}$ if :
(i) $y=\frac{\sin ^{-1} \sqrt{x}}{x^{3}}$
(ii) $\mathrm{x}=\mathrm{a}(\theta-\sin \theta) ; \mathrm{y}=\mathrm{a}(1-\cos \theta)$
(c) If $y=A \operatorname{cospx}+B \sin p x(A, B, p$ are constants $)$, show that $\frac{d^{2} y}{d x^{2}}$ is proportional to ' y '.

OR

VIII (a) Evaluate : $\operatorname{Lt}_{x \rightarrow 0} \frac{1-\cos 2 x}{x^{2}}$
(b) Find $\frac{d y}{d x}$ if $y=\left(x^{2}+1\right)^{10} \sec ^{5} x$
(c) Using quotient rule, find the derivative of ' $\tan x$ '.
(d) If $y=a \cos (\log x)+b \sin (\log x)$ show that $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=0$.
UNIT - IV

IX (a) Find the velocity and acceleration at time $t=4$ secs. of a body whose displacement s metre related to time ' t ' seconds is given by the equation $\mathrm{s}=\frac{1}{2} \mathrm{t}^{2}+\sqrt{\mathrm{t}}$
(b) A circular plate of radius 3 inches expands when heated at the rate of $2 \mathrm{inch} / \mathrm{sec}$. Find the rate at which the area of the plate is increasing at the end of 3 secs.
(c) Find the maximum and minimum values of $2 x^{3}-3 x^{2}-36 x+10$.

OR

X (a) A balloon is spherical in shape. Gas is escaping from it at the rate of $20 \mathrm{cc} / \mathrm{sec}$. How fast is the surface area shrinking when the radius is 15 cm .
(b) For what values of ' x ' is the tangent to the curve $\frac{x}{x^{2}+1}$ parallel to the x-axis. 5
(c) An open box is to be made out of a square sheet of side 18 cm , by cutting off equal squares at each corner and turning up the sides. What size of the squares should be cut in order that the volume of the box may be maximum?

