TED (15) - 1003
(REVISION - 2015)

Reg. No. \qquad
\qquad

FIRST SEMESTER DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY - MARCH, 2016
 ENGINEERING PHYSICS - I
 (Common to all branches except CABM and DCP)

[Time : 3 hours
(Maximum marks : 100)

PART - A

(Maximum marks : 10)

I Answer all questions in one or two sentences. Each question carries 2 marks.

1. What are the advantages of SI over all other unit systems ?
2. Define the terms resultant and equilibrant of two forces.
3. Distinguish between stress and strain. Give their units.
4. What is meant by resonance ?
5. Define simple harmonic motion. Give two examples for simple harmonic motion.

PART-B
(Maximum marks : 30)
II Answer any five questions from the following. Each question carries 6 marks.

1. State the law of motion that helps us to measure force. Define force and explain how force is measured ?
2. Give an example to illustrate the third law. Explain the principle of rocket propulsion and recoil of a gun.
3. What is meant by resolution of a vector? What is rectangular resolution? Give two rectangular components of force 4 N acting at an angle 30° to the horizontal.
4. The largest resultant of two forces P and Q is 31 N and the least resultant is 17 N . What is the resultant if P and Q act at right angles ?
5. Describe an experiment to find the Young's modulus of a wire.
6. The volume of a metal sphere of radius 7 cm is decreased by 0.019 centimeter cube when subjected to a pressure of $124 \mathrm{kN} / \mathrm{m}^{3}$. Find out its bulk modulus.
7. Derive the expression for the fundamental frequency and second harmonic in an open pipe of length L.
PART-C
(Maximum marks : 60)
(Answer one full question from each unit. Each full question carries 15 marks.)
UnIT - I

III (a) Write the equations of motion of a body moving under gravity.
(b) Define the terms velocity and acceleration. Dérive the formula for the distance travelled by a particle during the $\mathrm{n}^{\text {th }}$ second of its motion, when the body is moving with uniform acceleration.
(c) A body of mass $10^{3} \mathrm{~kg}$ at rest is acted on by a force 200 N . How much time is required for the body to acquire a velocity $20 \mathrm{~m} / \mathrm{s}$.

Or

IV (a) Define impulse of a force and show that it is equal to the change in momentum.
(b) State Newton's third law of motion. Deduce the law of conservation of momentum using Newton's laws of motion.
(c) A uniformly accelerated body travels 20 m during the $7^{\text {th }}$ second and 24 m during the $9^{\text {th }}$ second. Find out the distance travelled during the $15^{\text {th }}$ second of its motion.
UNIT - II

V (a) State and explain Lami's theorem.
(b) State the law of parallelogram of forces. Find out the magnitude and direction of the resultant of two forces P and Q acting at an angle θ. Discuss the cases for $\theta=0^{\circ}, 90^{\circ}$ and 180°.
(c) The resultant of two unequal forces acting at 150° is perpendicular to the smaller force. If the larger force is 3 N , find the smaller force and resultant.
Or

VI (a) Define the term moment of a force about a point. State the conditions of equilibrium of a body under the action of coplanar parallel forces.
(b) Derive a formula for the work done by a couple. Calculate the work done in one second when a couple 200 Nm rotates a shaft at the rate 60 revolutions per minute.
(c) At the marks $30 \mathrm{~cm}, 45 \mathrm{~cm}$ and 80 cm of a meter scale of mass 0.5 kg ,
weights $1 \mathrm{~kg}, 2 \mathrm{~kg}$ and 3 kg respectively are suspended. Where the scale should be suspended so that it remains horizontal ?

UNIT - III
VII (a) State Hooke's law. Explain the term elastic fatigue.
(b) What is terminal velocity? Using stokes law, obtain an expression for the terminal velocity of a sphere falling through a viscous liquid.
(c) A capillary tube of length 0.20 m and radius 0.5 mm is fitted horizontally to the bottom of a large vessel containing a liquid of density $800 \mathrm{~kg} / \mathrm{m}^{3}$. The tube is 0.30 m below the surface of the liquid. If the coefficient of viscosity of the liquid is $0.0012 \mathrm{kgm}^{-1} \mathrm{~s}^{-1}$, find the mass of the liquid flowing out in 5 minutes.

Or

VIII (a) Explain the equation of continuity in the case of a fluid flowing through a pipe of varying cross-section.
(b) State Bernoullis principle. Explain the lift of an air craft using Bernoullis principle.
(c) In a model aeroplane, air streams across the wing of area $3 \mathrm{~m}^{2}$. The flow speeds on the upper and lower surfaces of the wing are $60 \mathrm{~m} / \mathrm{s}$ and $45 \mathrm{~m} / \mathrm{s}$ respectively. Find the lift on the wing. Density of air is $1.3 \mathrm{~kg} / \mathrm{m}^{3}$.
Unit - IV

IX (a) What is ultrasonics? Give few applications of ultrasonics.
(b) Explain the terms frequency, period, amplitude and phase of a wave. Derive an expression for the velocity of a wave.
(c) A pipe of length 18 cm is closed at one end. Find out the lowest frequency of a tuning fork which will vibrate in unison with the air column. Velocity of sound in air is $345.6 \mathrm{~m} / \mathrm{s}$.

Or

X (a) What is end correction as applied to vibration of air column contained in a pipe ?
(b) Discuss the resonance column experiment to determine the velocity of sound in air.
(c) In a resonance column experiment the first and second resonance lengths were 17.6 cm and 53.2 cm when excited by a tuning fork of frequency 484 Hz . If the laboratory temperature was $25^{\circ} \mathrm{C}$, calculate the velocity of sound in air.

3

6

