

TED (15) - 1003

(REVISION -	-2015)
IN COLUMNIA TO A	

Reg.	No.	
Sign	ature	

FIRST SEMESTER DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY — APRIL, 2017

ENGINEERING PHYSICS - I

(Common to all branches except CABM and DCP)

[Time: 3 hours

(Maximum marks: 100)

PART - A

(Maximum marks: 10)

Marks

- I Answer the following questions in one or two sentences. Each question carries 2 marks.
 - 1. Define derived quantity. Mention the names of any two derived quantities.
 - 2. State triangle law of vector addition.
 - 3. State the term simple harmonic motion. Give two example for simple harmonic motion.
 - 4. The kinetic energy of a body of mass 2 kg is 100J. Calculate its momentum.
 - 5. Define the term stress and strain. Give its unit.

 $(5 \times 2 = 10)$

PART - B

(Maximum marks: 30)

- II Answer any five questions from the following. Each question carries 6 marks.
 - Define kinetic energy. Show that the relation between kinetic energy and momentum. Two bodies of masses m₁ and m₂ have the same kinetic energy. What is the ratio of their momenta?
 - 2. Explain the term resolution of a vector. What is rectangular resolution? A force of 30N makes an angle 30° with the horizontal. Find its horizontal and vertical components.
 - 3. Define stream line flow and turbulent flow. Explain different types of energy associated with a flowing fluid.
 - 4. Define coefficient of viscosity and describe poiseuille's method to determine coefficient viscosity of water.
 - Define wave length, frequency and velocity of a wave. Derive the relation between them.

Marks

- 6. In a resonance column experiments conducted at 25°C, the first and second resonant lengths were obtained as 16.9cm and 50.6cm respectively. When exited by a tuning fork of frequency 512Hz, calculate the velocity of sound at laboratory temperature and at 0°C.
- 7. Define the term velocity and acceleration. Derive the equation distance travelled by the particle during n^{th} second of its motion, when the body is moving with uniform acceleration. (5×6 = 30)

PART — C

(Maximum marks: 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

UNIT -- I

		Unit — I	
III	(a)	Explain the term recoil of a gun. Write the expression for recoil velocity.	3
	(b)	A uniformly accelerated body travels 50 mts in 5 seconds. If it covers 14 mts during 5 th second, find out initial velocity and acceleration.	6
	(c)	State Newton's second law and derive the expression for force from it.	6
		OR	
IV	(a)	Write the equations of motion for a body projected vertically upwards.	3
	(b)	State Newton's third law of motion. Deduce the law of conservation of momentum using Newton's laws of motion.	6
	(c)	Explain the term work done. Calculate the work done in changing the momentum of a body of mass 10kg from 40 SI units to 20 SI units.	6
		Unit — II	
V	(a)	State the law of parallelogram of forces. Find out the magnitude and direction of the resultant of two forces P and Q acting at an angle θ . Discuss the case for $\theta = 0^{\circ}$, 90° and 180°.	6
	(b)	At marks 30cm, 45cm and 86cm of a meter scale of mass 0.5kg, weights 1kg, 2kg and 3kg respectively are suspended. Where should the scale be suspended so that it remains horizontal?	6
	(c)	Explain the term couple and what are the characteristics of couple.	3
		OR	
VI	(a)	State and explain lama's theorem.	3
	(b)	Define the term resultant and equilibrant. The maximum value of resultant of two forces P and Q is 31 N and minimum value of resultant is 17N. Find out the resultant when P and Q Act at right angle.	6
	(c)	Explain coplanar parallel forces. Two unequal forces act at 120°. The larger force is 80N and the resultant is normal to the smaller. Find the value of the smaller force.	.6
		2017년 1일 전 1일	

Marks

Unit — III

VII	(a)	State young's modulus of elasticity. A weight 10kg is suspended to one end of metal wire of length of four metered and radius 1mm. Find young modulus, if the extension produced is 0.998mm.	6
	(b)	Distinguish between elasticity and plasticity.	3
	(c)	A rain drop of diameter 0.02mm falls down through air of $\eta = 1.8 \times 10^{-5} \text{kgm}^{-1} \text{s}^{-1}$. Calculate its terminal velocity, density of water 10kg/m^3 , density of air can be neglected.	6
		OR	
VIII	(a)	Explain stokes formula and derive an expression for terminal velocity of a sphere falling through a viscous fluid.	6
	(b)	Explain equation of continuity in the case of a fluid flowing through a pipe of varying cross section.	3
	(c)	State Bernoulli's principle. Explain the lift of an aircraft using Bernoulli's principle.	6
		Unit — IV	
IX	(a)	Mention 3 characteristics of stationary waves.	3
	(b)	What are ultrasonic waves, describe a method to produce ultra sonic waves.	6.
	(c)	Prove that the projection of uniform circular motion on the axis of the circle is simple harmonic.	6
		OR ,	
X	(a)	Discuss resonance column experiments to determine the velocity of sound in air.	6
	(b)	Velocity of sound in air at 300K is 346 m/s. At what temperature will the velocity be 405m/s?	3
	(c)	Explain the term ultrasonic list application of ultrasonic waves.	6

