TED (15) - 2003
(REVISION - 2015)

Reg. No. \qquad
Signature \qquad

SECOND SEMESTER DIPLOMA EXAMINATION IN ENGINEERING/ TECHNOLOGY - MARCH, 2016

ENGINEERING PHYSICS - II

(Common to all branches except DCP and CABM)
[Time : 3 hours
(Maximum marks : 100)

PART - A

(Maximum marks : 10)

I Answer the following questions in one or two sentences. Each question carries 2 marks.

1. Define torque. What is its unit ?
2. On what factors do moment of inertia of a body depend on ?
3. Define gravitational potential. Give an expression for it.
4. What is the use of shunt resistance in an ammeter ?
5. Give two applications of photoelectric effect.

> PART - B
(Maximum marks : 30)
II Answer any five of the following questions. Each question carries 6 marks.

1. A train has to negotiate a curve of radius 400 m . By how much the outer rail be raised as compared with the inner rail for a speed of $54 \mathrm{~km} / \mathrm{hr}$. The distance between the rails is 1 m .
2. A flywheel starting from rest is accelerated by a steady torque of 24 Nm so that it acquires an angular velocity of $6 \pi \mathrm{rad} / \mathrm{s}$ after 2 seconds. The mass of the fly wheel is 15 kg . Calculate angular acceleration and radius of gyration.
3. Derive an expression for the escape velocity. Calculate the escape velocity on the surface of earth. Mass of earth is $6 \times 10^{24} \mathrm{~kg}, \mathrm{G}=6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$, Radius of earth is $6.4 \times 10^{6} \mathrm{~m}$.
4. At what height from the surface of earth will the value of g be reduced to $14^{\text {th }}$ the value at the surface of earth? Radius of earth is 6400 km .
5. Describe the terms resistance and resistivity. A constantan wire of length 1 m and diameter 0.71 mm has a resistance of 1.2Ω. Calculate the resistivity of constantan.
6. State Biot-Savart law and apply it to calculate the magnetic field intensity at the centre of a circular coil carrying a current.
7. The work function of a metal is 2.8 eV . What is its threshold wavelength ? $\left(1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}, \mathrm{~h}=6.63 \times 10^{-34} \mathrm{Js}\right)$

PART -- C

(Maximum marks : 60)
(Answer one full question from each unit. Each full question carries 15 marks.)
UNit - I

III (a) What is meant by angular velocity? Derive the relation between linear velocity and angular velocity for uniform circular motion.
(b) Derive an expression for the moment of inertia of a uniform circular disc about an axis passing through its centre and perpendicular to its plane.
(c) A ring of mass 2 kg and radius 10 cm is rolling on a horizontal surface with constant angular velocity $6 \pi \mathrm{rad} / \mathrm{s}$. Calculate moment of inertia about its axis and rotational kinetic energy.

Or

IV (a) Derive an expression for the centripetal acceleration of a body in uniform circular motion.
(b) State and explain parallel axes and perpendicular axes theorem.
(c) Five masses $3 \mathrm{~kg}, 4 \mathrm{~kg}, 1 \mathrm{~kg}, 4 \mathrm{~kg}$ and 3 kg are placed on a light rod. The distance between two consecutive masses is 2 m . Find the moment of inertia and radius of gyration about the perpendicular axis passing through the 1 kg mass.
Livi - II

V (a) Discuss the variation of g with altitude.
(b) Derive expressions for orbital velocity and period of revolution of an artificial satellite.
(c) An Artificial satellite is revolving around the earth of radius 6400 km takes 10 hours to complete one revolution. Find the distance to it from the surface of the earth. Acceleration due to gravity on the surface of earth is $9.8 \mathrm{~m} / \mathrm{s}^{2}$.
Marks
VI (a) What are geostationary satellites ? Describe its applications.
(b) Calculate the height at which a geostationary satellite revolves above the earth. Acceleration due to gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2}$ on the surface of earth and the radius of earth is 6400 km .
(c) Derive expressions for variation of g with altitude and depth.
Unit - III
VII (a) Give expression for the force acting on a current carrying conductor placed in a magnetic field. Also state Fleming's left hand rule.
(b) With the help of a neat diagram, explain the working of a metre bridge. How is it used for the measurement of resistance ?
(c) A galvanometer of resistance 70Ω shows full scale deflection for a current of 2 mA . How can it be converted to :
(a) an ammeter of range 10 A , (b) a voltmeter of range 5 V ?
Or
VIII (a) Two resistors 10Ω and 10Ω are connected in parallel and the combination is then connected in series with 8Ω. Find the effective resistance.
(b) State Ohm's law. Describe the laws of combination of resistances.
(c) When a current 2 A flows through a circular coil of radius 5 cm a magnetic field intensity 12.56×10^{-4} tesla is generated at the centre. Calculate the number of turns in the coil.
Unit - IV
IX (a) What are the advantages of solid state laser over other lasers ? 3
(b) With the help of a neat diagram, explain the working of a Ruby laser. 6
(c) The photoelectric work function of copper is $7.2 \times 10^{-19} \mathrm{~J}$. Calculate the threshold wavelength and threshold frequency.
$\left(\mathrm{h}=6.63 \times 10^{-34} \mathrm{Js}, \mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)$

OR

X (a) Mention three uses of a nuclear reactors.
(c) When a metal is irradiated with light of wavelength 100 nm , the maximum kinetic
energy of the liberated electrons is $10^{-18} \mathrm{~J}$. Calculate the work function of the metal.

