

TED (15) - 2002

(REVISION - 2015)

Reg. No.	
Signature	

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE — OCTOBER 2018

ENGINEERING MATHEMATICS - II

[Time: 3 hours

(Maximum marks: 100)

PART — A

(Maximum marks: 10)

Marks

- I Answer all questions. Each question carries 2 marks.
 - 1. Find a unit vector in the direction of the vector $2\vec{i} + \vec{j} 2\vec{k}$.
 - 2. Evaluate $\begin{vmatrix} 1 & 2 & -1 \\ 2 & 0 & 3 \\ -2 & -4 & 2 \end{vmatrix}$
 - 3. If $A = \begin{bmatrix} 0 & 2 \\ -1 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \\ 3 & -1 \end{bmatrix}$, find $(A+B)^T$
 - 4. Find $\int (3x^2 2x + 1) dx$
 - 5. Solve $\frac{d^2y}{dx^2} = \sin x$

 $(5 \times 2 = 10)$

PART -B

(Maximum marks: 30)

- II Answer any five of the following questions. Each question carries 6 marks.
 - 1. The constant forces $2\overline{i} 5\overline{j} + 6\overline{k}$, $-\overline{i} + 2\overline{j} \overline{k}$ and $2\overline{i} + 7\overline{j}$ act on a Particle such that the particle is displaced from the position $4\overline{i} 3\overline{j} 2\overline{k}$ to $6\overline{i} + \overline{j} 3\overline{k}$. Find the total work done.
 - 2. Find the term indipendant of x in the expansion of $\left(3x^2 \frac{1}{2x^3}\right)^{10}$
 - 3. If $A = \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix}$, find $A^2 5A + 6I$
 - 4. Find the inverse of the matrix $\begin{bmatrix} 3 & -2 & 3 \\ 2 & 1 & -1 \\ 4 & -3 & 2 \end{bmatrix}$

Marks

5

Evaluate $\int \pi / 8 \sin x \sin 3x \, dx$.

Find the area of a circle of radius 'r' units using integration.

7. Solve:
$$x(1 + y^2) dx + y(1 + x^2) dy = 0$$
 (5×6 = 30)

PART — C

(Maximum marks: 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

III (a) Find the angle between the vectors $\vec{i} - 2\vec{j} + 3\vec{k}$ and $3\vec{i} - 2\vec{j} + \vec{k}$

(b) Find the value of λ for which the vectors $3\overline{i} + 2\overline{j} + 9\overline{k}$ and $\overline{i} + \lambda \overline{j} + 3\overline{k}$

(c) Find the 10th term in the expansion of $\left(x^2 - \frac{1}{x^2}\right)^{20}$ 5

OR

IV (a) Find $\bar{a} \times \bar{b}$ if

$$\bar{a} = 2\bar{i} + 3\bar{j} + 6\bar{k},$$

$$\bar{b} = 3\bar{i} - 6\bar{j} + 2\bar{k}$$

(b) If $\bar{a} = 5i - \bar{j} - 3\bar{k}$ and $\bar{b} = \bar{i} + 3\bar{j} - 5\bar{k}$ show that $\bar{a} + \bar{b}$ and a - b are perpendicular.

5

(c) Expand $(2x + 3y)^4$ using binomial theorem.

Unit — II

V (a) Solve for 'x' if
$$\begin{vmatrix} 2x-1 & x+1 \\ x+2 & x-2 \end{vmatrix} = 0$$

(b) Find A and B if

$$A + B = \begin{bmatrix} 4 & 6 \\ 2 & 3 \end{bmatrix} \text{ and } A - B = \begin{bmatrix} -2 & 8 \\ 4 & -1 \end{bmatrix}$$

(c) If A
$$\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & -1 \\ 3 & 0 & 1 \end{bmatrix}$$
 Evaluate A³

Marks VI (a) Solve using determinants $\frac{5}{x} + \frac{2}{y} = 4$, $\frac{2}{x} - \frac{1}{y} = 7$ 5 (b) For the matrices given below, compute AB and BA and show that AB ≠ BA $A = \begin{bmatrix} 1 & 2 & 3 \\ -4 & 5 & -1 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$ 5 (c) Find the adjoint of the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & -3 \\ -1 & 2 & 3 \end{bmatrix}$ 5 Unit -- III VII (a) Evaluate $\int \frac{3 \cos x + 4}{\sin^2 x} dx$ 5 (b) Evaluate $\int \frac{1}{x \log x} dx$ 5 (c) Evaluate $\int \pi^2 x \sin x \, dx$ 5 OR VIII (a) Evaluate $\int \sin^3 x \cos x \, dx$ 5 (b) Evaluate $\int x^2 e^{-x} dx$ 5 (c) Evaluate $\int_{0}^{1} \frac{2x+1}{x^2+x+1} dx$ 5 UNIT -- IV IX (a) Find the area enclosed between the curve $y = x^2$ and the straight line y = 3x + 45 (b) Find the volume generated by rotating the area bounded by $y = 2x^2 + 1$,

the Y - axis and the lines y = 3, y = 9 about the Y-axis.

5

(c) Solve $x \frac{dy}{dx} + 3y = 5x^2$

5

OR

X (a) Find the volume of a sphere of radius 'r' using integration.

5

(b) Solve
$$\frac{dy}{dx} = (1 + x) (1 + y^2)$$

5

(c) Solve
$$\frac{dy}{dx} + \frac{x\sqrt{1+y^2}}{y\sqrt{1+x^2}} = 0$$

5

