\qquad
\qquad
DIPLOMA EXAMINATION N ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE - OCTOBER, 2018

DIGITAL ELECTRONICS

(Maximum marks : 100)

PART - A
(Maximum marks : 10)

I Answer all questions in one or two sentences. Each question carries 2 marks.

1. Give the l's and 2's complements of 11011100 .
2. Give the symbol and truth table of an XOR gate.
3. Define the term fan-in of a gate.

4 What do you mean by a sequential logic circuit?
5. List the different types of $A D C$.
PART — B
(Maximum marks : 30)
II Answer any five of the following questions. Each question carries 6 marks.

1. What are the advantages and disadvantages of K-map ?
2. Explain a half subtractor circuit with truth table and logic diagram.
3. Draw and explain a serial in parallel out shift register.
4. Explain the working of a Johnson counter with diagram.
5. What is 'modulus' of a counter? Give the truth table of a mod-8 counter.
6. Explain the operation of a 1 to 4 De-multiplexer.
7. Explain a flash type ADC.
PART - C
(Maximum marks : 60)
(Answer one full question from each unit. Each full question carries 15 marks.)
Unit - I

III (a) Perform the following operations.
(i) 1000×1001
(ii) $110111+11010$
(iii) $1101101 \div 101$
(iv) $(+15)+(-9)$ using 2 's complement method.
(b) What are universal gates ? Give examples.

Or
IV (a) Simplify the Boolean function using K-map. $\mathrm{F}=\Sigma \mathrm{m}(0,3,7,10,14)+\mathrm{d}(2,4,6,9,11,13)$
(b) State and explain De-Morgan's theorems. 6

Unit - II
V (a) Explain the working of a 3 bit encoder with truth table and logic diagram.
(b) Define the terms Noise margin, Noise immunity and propagation delay.

OR
VI (a) Design a full adder circuit.
(b) Draw and explain a TTL inverter.

Unit - III
VII (a) Explain the working of master slave JK flip-flop with diagram.
(b) Draw the truth tables of D and T flip-flops.

Or
VIII (a) Explain the different types of shift registers with diagrams.
(b) What is race around condition? How it can be eliminated?

Unit - IV

IX (a) Implement a mod-10 asynchronous counter using JK flip-flops. 10
(b) Define resolution and accuracy of a DAC.

Or
X (a) Explain the working of R-2R ladder type DAC with diagram.
(b) Differentiate between asynchronous and synchronous counters.

