

TED (15) - 3042 (REVISION — 2015)

Reg. No.	

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE — OCTOBER, 2018

DIGITAL ELECTRONICS

[Time: 3 hours

(Maximum marks: 100)

PART — A

(Maximum marks: 10)

Marks

- I Answer all questions in one or two sentences. Each question carries 2 marks.
 - 1. Give the l's and 2's complements of 1101 1100.
 - 2. Give the symbol and truth table of an XOR gate.
 - 3. Define the term fan-in of a gate.
 - 4 What do you mean by a sequential logic circuit?
 - 5. List the different types of ADC.

 $(5 \times 2 = 10)$

PART — B

(Maximum marks: 30)

- II Answer any five of the following questions. Each question carries 6 marks.
 - 1. What are the advantages and disadvantages of K-map?
 - 2. Explain a half subtractor circuit with truth table and logic diagram.
 - 3. Draw and explain a serial in parallel out shift register.
 - 4. Explain the working of a Johnson counter with diagram.
 - 5. What is 'modulus' of a counter? Give the truth table of a mod-8 counter.
 - 6. Explain the operation of a 1 to 4 De-multiplexer.
 - 7. Explain a flash type ADC.

 $(5 \times 6 = 30)$

PART — C

Marks

(Maximum marks: 60)

	(4	Answer one full question from each unit. Each full question carries 15 marks.)		
		Unit — I		
III	(a) l	Perform the following operations.		
		(i) 1000 × 1001		
	((ii) 110111 + 11010		
	(1	iii) 1101101 ÷ 101		
	(i	iv) (+15) + (-9) using 2's complement method.	12	
	(b)	What are universal gates? Give examples.	3	
		OR		
IV	(a)	Simplify the Boolean function using K-map.		
$F = \sum m (0, 3, 7, 10, 14) + d(2, 4, 6, 9, 11, 13)$		9		
	(b)	State and explain De-Morgan's theorems.	6	
		Unit — II		
V	(a)	Explain the working of a 3 bit encoder with truth table and logic diagram.	9	
		Define the terms Noise margin, Noise immunity and propagation delay.	6	
		OR		
VI	(a)	Design a ful1 adder circuit.	9	
	(b)	Draw and explain a TTL inverter.	6	
Unit — III				
, , , , , , , , , , , , , , , , , , ,	(-)	Explain the working of master slave JK flip-flop with diagram.	10	
VII	(a)		5	
(b) Draw the truth tables of D and T flip-flops. OR				
VIII	(a)	Explain the different types of shift registers with diagrams.	10	
V 111	(b)	What is race around condition? How it can be eliminated?	5	
	(0)	Unit — IV		
		Implement a mod-10 asynchronous counter using JK flip-flops.	10	
IX	(a)	HO 등 전문 공통 보고 있는 보고 있으면 이 다른 사람들이 되었다. 그는 사람들이 보고 있는 것이 되었다. 그 사람들이 보고 있는 것이 되었다. 사람들이 되었다고 있다.	5	
	(b)	Define resolution and accuracy of a DAC.		
		OR	10	
X	(a)	Explain the working of R-2R ladder type DAC with diagram.	5	
	(b)	Differentiate between asynchronous and synchronous counters.	,	