

TED $(15) \div 3043$ (REVISION — 2015)

Reg. No.	
Signature	

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE — OCTOBER, 2018

ELECTRICAL TECHNOLOGY

[Time: 3 hours

(Maximum marks: 100)

PART -- A

(Maximum marks: 10)

Marks

- I Answer all questions in one or two sentences. Each question carries 2 marks.
 - 1. Define impedance.
 - 2. Write the primary emf equation of a single phase transformer.
 - 3. What are the different types of D C motor?
 - 4. Write any 2 applications of stepper motor.
 - 5. State superposition Theorem.

 $(5 \times 2 = 10)$

PART — B

(Maximum marks: 30)

- II Answer any five of the following questions. Each question carries 6 marks.
 - 1. Explain the working of Megger.
 - 2. State and explain Kirchhoff's Laws.
 - 3. Derive the emf equation of transformer.
 - 4. Explain the armature reaction and it's effects.
 - 5. Explain the working principle of stepper motor.
 - 6. Draw and explain the DC servo motor.
 - 7. Define the terms cycle, time period, frequency, amplitude.

 $(5 \times 6 = 30)$

Marks

PART — C

(Maximum marks: 60)

		(Answer one full question from each unit. Each full question carries 15 marks.)	
		Unit — I	
III	(a)	Describe effect of AC through a RLC circuit.	8
	(b)	An inductor coil of 0.2H with a resistance of 20Ω and a capacitance of $160~\mu F$ are connected in series and fed by a 230V, 50Hz supply. Find impedance, pf, active power and reactive power.	7
		OR	
IV	(a)	A resistance of 10Ω , an inductance of 20mH and a capacitance of $47\mu F$ are connected in series 220V, 50Hz supply. Determine (i) the voltage across R, L and C (ii) power in watts.	7
	(b)	Explain the plate earthing method with neat sketch.	8
		Unit — II	
v	(a)	State and prove Thevenin's Theorem.	7
	(b)	Explain the construction of a transformer.	8
		OR	
VI	(a)	Illustrate the elementary theory of an ideal transformer.	7
	(b)	State and prove maximum power transfer theorem.	8
		Unit — III	
VII	(a)	Explain the working principle of DC generator.	8
	(b)	Explain the necessity of starter in a DC motor and working of a 3 point starter.	7
		OR	
VIII	(a)	Derive emf equation of a DC generator.	7
	(b)	Draw the electrical and mechanical characteristics of a DC series motor and explain it.	8
		Unit — IV	
IX	(a)	What is the relation between the speed and frequency of an alternator?	7
	(b)	With the help of relevant figures explain how a single phase induction motor is made self starting.	8
		OR	
X	(a)	What is the principle of operation of a 3Φ Induction motor.	7
	(b)	Explain the working principle of an alternator.	8