

TED (15) - 3133

(REVISION	2015)
-----------	-------

Reg. No.	
Signature	

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE — OCTOBER, 2018

DIGITAL COMPUTER PRINCIPLES

ĺ	Time		3	hours
ı	Lune	4)	HOIT 2

(Maximum marks: 100)

PART — A

(Maximum marks: 10)

Marks

- I Answer all questions in one or two sentences. Each question carries 2 marks.
 - 1. Define base of a number system.
 - 2. What is parity bit?
 - 3. Define Encoder.
 - 4. Define latch.
 - 5. What is PAL?

 $(5 \times 2 = 10)$

PART — B

(Maximum marks: 30)

- II Answer any five of the following questions. Each question carries 6 marks.
 - 1. Write short notes on BCD codes.
 - 2. State and prove De-Morgan's theorem.
 - 3. Realize EX-OR, OR gates using NAND gate.
 - 4. Expand A' + B' to minterms and maxterms.
 - 5. Explain the working of a D-flipflop.
 - 6. Differentiate synchronous and asynchronous sequential circuits.
 - 7. Explain how memory decoding is performed.

 $(5 \times 6 = 30)$

Marks

PART — C

(Maximum marks: 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

Unit — I

III	(a)	Convert the following:	
		(i) (11011.101) ₂ to Decimal	
		(ii) (BFA6) ₁₆ to binary	
		(iii) (756.603) ₈ to hexa decimal	9
	(b)	Reduce and draw the logic diagram for the Boolean expression $F = A(B+C)+B'(B+D)$	6
		Or	
IV	(a)	Explain basic gates with truth table and logic diagram.	9
	(b)	Explain the procedure of obtaining an equivalent gray code for a binary code with example.	6
		Unit — II	
V	(a)	Simplify the Boolean function $F(w, x, y, z) = \sum m(1, 3, 7, 11, 15)$ which has the don't-care conditions $d(w, x, y, z) = (0, 2, 5)$.	9
	(b)	Design a half adder with truth table and logic diagram.	6
		OR	
VI	(a)	Design a decimal Adder with truth table and logic diagram.	9
	(b)	Write short notes on SOP and POS forms.	6
		Unit — III	
VII	Ехр	plain about different types of shift registers.	15
		OR	
/III	(a)	Explain the working of a JK-Flipflop with truth table and diagram.	8
	(b)	Design a 3 bit up counter.	7
		Unit — IV	
IX	(a)	Explain the specifications of a DAC.	8
	(b)	Explain construction of memory cell with logic diagram.	7
		OR	
X	(a)	Explain the working of programmable logic array with an example.	9
	(b)	Explain a R-2R ladder DAC.	6