

N1	Λ		00488
~ 1	ч	-	IIIII4XX

TED	(15)	 5044
(REVI	SION -	 2015

Reg. No.	
Cianatura	•

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE — OCTOBER, 2019

MEDICAL ELECTRONICS

[Time: 3 hours

(Maximum marks: 100)

PART — A

(Maximum marks: 10)

Marks

- I Answer all questions in one or two sentences. Each question carries 2 marks.
 - 1. Name any two electrodes used for measuring ECG.
 - 2. List the properties of laser.
 - 3. What are the modes of ventilators?
 - 4. List the applications of CT.
 - 5. Define systolic blood pressure.

 $(5 \times 2 = 10)$

PART — B

(Maximum marks: 30)

- II Answer any five of the following questions. Each question carries 6 marks.
 - 1. Explain the generation of action potential.
 - 2. Explain with neat diagram of ND YAG LASER.
 - 3. Compare AC and DC defibrillation.
 - 4. Define macroshock and microshock.
 - 5. Explain the block diagram of biotelemetry system.
 - 6. Explain shortwave diathermy treatment.
 - 7. Write short note on surface electrode.

 $(5 \times 6 = 30)$

[157]

Marks

p	Á	\mathbf{R}^{γ}	Γ	. C

		(Maximum marks : 60)	
		(Answer one full question from each unit. Each full question carries 15 marks.)	
		Unit — I	
III	(a)	Explain the block diagram of ECG recorder.	10
	(b)	Write short notes on microelectrodes.	5
		O_{R}	
IV	(a)	Draw and explain the block diagram of EMG machine.	9
	(b)	Describe EEG recording techniques.	6
		Unit — II	
V	(a)	Explain automatic optical blood counting method.	8
	(b)	With block diagram explain blood gas analyzer.	7
		O_R	
VI	(a)	Explain blood pressure measurements using sphygmomanometer.	8
	(b)	Explain the working of argon laser.	7
		Unit — III	
VII	(a)	Explain the functions of dialysis machine.	8
	(b)	What are different types of pacemaker?	7
		$O_{\mathbb{R}}$	
VIII	(a)	Explain different types of diathermy equipments.	9
	(b)	State the use of respirators.	6
		Unit — IV	
IX	(a)	Explain the operation of X ray machine with block diagram.	9
	(b)	Explain the importance of the grounding.	6
		$O_{\mathbb{R}}$	
X	(a)	Explain the working principle of CT scanner with block diagram.	9
	(b)	List the application of magnetic resonance imaging.	6