

TED (15) - 4134

Reg	No		
~.			

(REVISION — 2015)

Signature

FOURTH SEMESTER DIPLOMA EXAMINATION IN ENGINEERING/ TECHNOLOGY — APRIL, 2017

OPERATING SYSTEM

(Common for CT and CHM)

[Time: 3 hours

(Maximum marks: 100)

PART — A

(Maximum marks: 10)

Marks

- I Answer the following questions in one or two sentences. Each question carries 2 marks.
 - 1. State the need of an assembler.
 - 2. Define process.
 - 3. List the conditions for deadlock.
 - 4. Name two solutions for external fragmentation.
 - 5. Define virtualization.

 $(5 \times 2 = 10)$

PART — B

(Maximum marks: 30)

- II Answer any five of the following questions. Each question carries 6 marks.
 - 1. Contrast between compiler and interpreter.
 - 2. Explain PCB with its structure.
 - 3. Explain different scheduling criteria.
 - 4. Compare Internal and external fragmentation.
 - 5. Summarize optimal and LRU page replacement algorithm.
 - 6. Compare linked and indexed file allocation methods.
 - 7. Explain various file operations.

 $(5 \times 6 = 30)$

Marks

PART — C

(Maximum marks: 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

		Unit — I	
III	(a)	Explain process management and memory management functions of OS.	9
	(b)	Explain Loader and its functions.	6
		OR	
IV	(a)	Explain multi programming, multiprocessing and time sharing systems.	9
	(b)	Explain operating system and its functions.	6
		Unit — II	
V	(a)	Explain FCFS, priority and RR CPU scheduling with examples.	9
	(b)	Explain resource allocation graph with a diagram.	6
		Or	
VI	(a)	Explain long term, short term and medium term schedulers with diagram.	9
	(b)	Summarize critical section problem.	6
		Unit III	
VII	(a)	Explain first fit, best fit and worse fit memory allocation strategies.	9
	(b)	Explain segmentation.	6
		OR	
/III	(a)	Explain demand paging with a diagram.	9
	(b)	Summarize different address binding schemes.	6
		Unit — IV	
IX	(a)	Summarize single, two level and tree structured directories.	9
	(b)	Explain the need for virtualization.	6
		OR	
X	(a)	Explain full, partial and para virtualization techniques.	9
	(b)	Explain VMvare architecture with a diagram	6