

Δ22	_ (70	49
HZZ	– u	<i>I I</i> U	43

Reg. No	 											
Signature	 											

https://www.gptcthirurangadi.in

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE, APRIL – 2022

ENGINEERING PHYSICS - I

[Maximum Marks: 100]	[Time: 3 Hours]

(PART-A)

(Answer *all* the questions in one or two sentences. Each question carries 2 marks)

- I. 1. Write down the SI unit of Temperature and Luminous intensity.
 - 2. State triangle law of vector addition.
 - 3. Define the terms stress and strain.
 - 4. State Newton's first law of motion.
 - 5. Define node and antinode.

 $(5 \times 2 = 10)$

(PART-B)

(Answer any *five* of the following questions. Each question carries 6 marks)

- II. 1. State Newton's third law of motion. Deduce the law of conservation of momentum using Newton's laws of motion.
 - 2. Explain the terms resolution of a vector. What is rectangular resolution? A force of 30 N makes an angle 60 with horizontal. Find its horizontal and vertical components.
 - 3. Define impulse. Show that it is equal to the change in momentum.
 - 4. State and Explain Lami's theorem.
 - 5. Define wavelength, frequency and velocity of wave. Derive the relation between them.
 - 6. State Bernoulli's principle. Explain the working of atomizer.
 - 7. Distinguish between free vibration and forced vibration. What is resonance? When does it happen? $(5 \times 6 = 30)$

(PART-C)

(Answer *one* full question from each Unit. Each full question carries 15 marks)

UNIT-I

III. (a) Define speed velocity and acceleration.

(b) Obtain an expression for distance travelled by a particle during the nth second of its motion.

(6)

(3)

(c) A body travels 30m in 5 th second and 80 m in 7 th second of its	tos://www.gptcthirurangadi.in
travelled in the 9 th second of its motion.	(6)
OR	
IV. (a) Define fundamental quantity and derived quantity. Give examp	ples. (3)
(b) Give any four advantages of SI system over other unit systems	. Give units for velocity and
acceleration.	(6)
(c) State Newton's second law. Derive an expression for force from	m it. (6)
UNIT – II	
V. (a) State parallelogram law of vector addition. Find out the magnitude	tude of resultant of two forces p
and Q acting at angle θ .	(6)
(b) Define parallel forces. State the conditions of equilibrium of a	body under the action of
coplanar forces.	(3)
(c) A force of 4N acts along the direction another force 5N makes	s an angle 60^0 with the first
force. Find the magnitude and direction of resultant.	(6)
OR	
VI. (a) Define couple. Derive an expression for work done by a coup	le. (6)
(b) A couple 100 Nm acts on the shaft of a motor and rotates it at	a speed of 7 rev/s. calculate the
power developed.	(6)
(c) Define the terms resultant and equilibrant.	(3)
UNIT- III	
VII. (a) Using Stoke's law obtain an expression for the terminal velocity	ity of a sphere falling through a
viscous liquid.	(6)
(b) Explain different types of energy associated with fluid flow.	(3)
(c) Find the terminal velocity of a rain drop of radius 0.3mm coef	fficient of viscosity of air
1.83 x 10 ⁻⁵ SI unit. Density of air is 1.3Kg/m ³ . Density of water	er is 1000 kg/m^3 . (6)
OR	
VIII. (a) Explain three types of modullii of elasticity.	(3)
(b) Write the equation of continuity for steady flow of an incomp	ressible fluid. The radius of a
pipe decreases from 3 cm to 2 cm. if the velocity of a water	er in the wider portion is 2 m/s.
calculate the velocity in the narrow path.	(6)
(c) Give Poiseceille's formula. Describe Poiseceille's method to	determine the coefficient of
viscosity of water.	(6)

UNIT - IV

https://www.gptcthirurangadi.in

IX.	(a) Define simple harmonic motion, write its differential equation.	(3)				
	(b) What are ultrasonic waves describe a method to procedure ultra sonic waves.	(6)				
(c) The shortest length of air column contained in a pope open at both ends resonating with						
	tuning form of frequency 384 Hz is 46 cm. calculate the velocity of sound.	(6)				
	OR					
X.	(a) Write a note on nodes and antinodes.	(3)				
	(b) Show that an open pipe produce all harmonics. Illustrate your answer with diagram.	(6)				
	(c) In a resonance column experiment first and second resonance length were 17.6 cm and	d				
	53.2 cm when executed by a tuning fork of frequency 484 Hz. If lab temperature is 25°C.					
	calculate the velocity of sound in air	(6)				
