

TED (21) 2041
(Revision-2021)

2106220058

Reg.No
Signature

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE, APRIL - 2022

BASIC ELECTRONICS

[Maximum marks: 75]

(Time: 3 Hours)

PART A

I. Answer all the following questions in one word or one sentence. Each question carries 1 mark

 $(9 \times 1 = 9 \text{ Marks})$

		Module	Cognitive
		outcome	level
1	Define doping	M1.01	R
2	What is the value of knee voltage of a silicon diode?	M1.03	R
3	Draw the symbol of an NPN transistor and mark the terminals.	M2.01	R
4	Define the current amplification facor γ of a transistor.	M2.03	R
5	Which mode of operation of a transistor makes it equivalent to an open	M2.04	R
	switch?		
6	Draw the symbol of UJT and mark the terminals.	M3.01	R
7	Why JFET is considered as a voltage controlled device?	M3.02	R
8	What is the function of filter circuits in a rectifier?	M4.02	R
9	Relate the time constant RC of the circuit and the time period of the input	M4.03	R
	wave for a good differentiation.		

PART B

II. Answer any eight questions from the following. Each question carries 3 marks

 $(8 \times 3 = 24 \text{ Marks})$

		Module	Cognitive
		outcome	level
1	Explain the formation of P type semiconductor from an intrinsic	M1.01	U
	semiconductor with diagram.		
2	List the difference between drift and diffusion currents	M1.02	R
3	With diagram, explain the formation of barrier potential in a PN junction	M1.02	U
4	Draw the forward VI characteristics and the corresponding junction biasing	M1.03	U
	of a PN junction diode.		
5	Explain active, saturation and cut off modes of operation of a transistor	M2.04	U
	w.r.t.biasing		
6	Outline the CB, CE and CC configurations of NPN transistor.	M2.03	U
7	Outline the output characteristics of CE configuration of NPN transistor	M2.04	U
	and mark active, saturation and cut off regions.		
8	Explain transistor action as an amplifier with a diagram	M2.05	U
9	Draw the equivalent circuit of UJT and define intrinsic stand-off ratio.	M3.03	R
10	Outline an RC circuit to obtain a triangular waveform from a square wave	M4.03	U
	input. Relate output wave with input wave diagrammatically		

 $\begin{array}{c} \textbf{PART C}\\ \textbf{III. Answer all questions. Each question carries seven marks} \end{array}$

 $(6 \times 7 = 42 \text{ Marks})$

		Module outcome	Cognitive level
1.	Demonstrate how static and dynamic resistance of PN junction diode can be calculated from VI characteristics. OR	M1.03	U
2.	Explain the energy band diagrams of a conductor, semiconductor and insulator and with a diagrams.	M1.01	U
3.	Outline the physical structure of an NPN transistor and explain the working principle.	M2.02	U
	OR		
4.	Explain the terms α and β of a transistor. Derive the relation between α and β	M2.03	U
5.	Illustrate the structure of N channel JFET and explain the working principle.	M3.02	U
6.	OR Outline the drain characteristics of N channel depletion type MOSFET and explain the operating modes.	M3.03	U
7	Compare the features of BJT with FET.	M3.04	U
	OR		
8	Explain the negative resistance property exhibited by UJT in its V-I characteristics.	M3.03	U
9,	Illustrate the operation of a shunt capacitor filter with diagram and waveform	M4.02	U
	OR		
10	Demonstrate the operation of a voltage tripler with a circuit diagram	M4.05	U
11	Model the output waveform for the given circuit if the input Vin is a 20Vpp sine wave. Explain the working of the circuit and outline the input and output waveforms. (Assume that the diode is ideal) R1 Vin Vin Vout	M4.04	A
